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Abstract !

This paper presents ¢ new approach to a gesture
tracking system using real-time range on-demand. The
system represents a gesture-controlled interface for in-
teractive visual exploration of large data sets. The
paper describes & method performing range process-
ing only when necessary and where necessary. Range
data is processed only for non-static regions of inter-

est. This is accomplished by a set of filters on the

color, motion, and range data. The speedup achieved
is between {1% and 54%. The algorithm also includes
a robust skin color segmentation insensitive to illumi-
nation changes. Selective range processing results in
dynamic regional range images (DRRIs). This devel-
opment is also placed in a broader context of a biolog-
ical visual system emulation, specifically redundancies

and attention mechanisms.
i Introduction

Recent. years have seen a drastic increase in the size
and complexity of scientific data. NIH’s Visible Hu-
man project generated data sets of a single 3-D vol-
ume consisting of 12 billion elements. Nearly a ter-
abyte of satellite data is produced daily. Advanced
physics simulation here, at the Lawrence Livermore
National Laboratory (LLNL), is responsible for gen-
erating large data sets, which plan to increase to one
terabyte every five minutes by the year 2004. Tra-
ditional visualization represents the last step in data
processing. However, efficiency of such processing suf-
fers when errors are discovered at this point, and the
entire data analysis cycle has to start over. Therefore,
the trend in data growth is amplified by increasing
requirements for interactive data access, display, ex-
ploration, analysis and collaboration. Focused on the

development of efficient techniques addressing these
ronmivamante QAVANRTER (Qaalahla Aloarithma far Vil

requirements, SAVAnTS (Scalable Algorithms for Vi-
sualization and Analysis of Terascale Science) project
is a collaboration between the Center for Applied Sci-
entific Computing at LLNL and multiple academic
partners. With such substantial amounts of data to
explore, we are also interested in developing new in-
teractive settings that would allow scientists to explore

1This work was performed under the auspices of the U.S. De-

partment of Energy by University of California Lawrence Liver-
maore National Labaratory under contract number W—7dﬂ"\-?l‘nn'-

48, UCRL-JC-136053
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their data in a more intuitive environment. The data
would be projected on a large screen, and updated
in real-time following gesture-based commands of in-
teracting scientists. The gesture tracking system de-
scribed in this paper will be responsible for supplying
data manipulation parameters to interactive data ex-
ploration and collaborative visualization software, and
to virtual reality systems.

Since the system is developed as a front end for
gesture-controlled large-scale visualization and virtual
reality manipulation, certain requirements and com-
plications are obvious. First, 3-D information is re-
quired, not necessarily at a video frame rate, but
at least a few times per second (optimal parameters
should be determined as a result of testing on a large
group of people). Second, not only arms or hands, but
also the entire body of the interacting person is mov-
ing. More over, interaction will take place in front of
the large screen where the data being manipulated will
be displayed. Most of the time the data will be up-
dated dynamically as a result of such manipulations,
and, therefore, traditional techniques such as back-
ground subtraction cannot easily separate figure from
the background. Third, motion of the interacting per-
son should be natural and result in intuitive data ma-
nipulation, where intuitive means easy to learn and
fast to achieve immediate results.

Object tracking from image sequences is a very im-
portant research domain. Goals of object tracking in-
clude segmenting each frame into differently moving
objects, selecting the object of interest, and analyz-
ing its motion during the entire sequence or multiple
sequences. Therefore, object tracking involves pro-
cessing of both spatial and temporal data. A number
of applications is dealing with tracking the motion of

ths human hady Thaga snnlicatinne ineclude vidan.
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surveillance, gesture-based interfaces to multimedia
applications and systems, interfaces for people with
disabilities that prevent them from using the stan-
dard input technology, and videoconferencing. The
most popular mode of HCI is based on devices like
keyboards and mice, which limit the speed and nat-
uralness of the interaction [12]. There is a continu-
ing effort to involve human communication through
movement in the design and development of computer
interfaces that adequately capture such natural forms




of communication. Another application is object ma-
nipulation in virtual environments,

Traditional approaches to tracking typically relied
on segmentation of the intensity data, using motion
or appearance data. A majority of the methods be-
gan by segmenting the human body from the back-
ground. For instance, in “blob approaches” people
were modeled as a number of biobs resulting from
pixel classification based on their color and position
in the image. Wren et al. [19] achieved segmentation
by classifying pixels into one of several models, in-
cluding a static world and a dynamic user represented
by gaussian blobs. Yang and Ahuja [21] used skin
color and the geometry of palm and face regions for
segmentation stages of their system. A Gaussian mix-
ture (with parameters estimated by an EM algorithm)
modeled the distribution of skin color pixels. Regh
and Kanade [14] used a 3-D hand model to track a
hand. They compared line features from the images
with the projected model and performed incremen-
tal state corrections. Similar work was presented by
Kuch and Huang [10} in which the synthesis process
could fit the hand model to any person’s hand. Bo-
bick and Wilson (3] treated gesture as a sequence of
states and cornputed configuration states along proto-
type gestures. Yacoob and Black proposed parameter-
ized representation of human movement [20]. Cutler
and Davis [5] segmented the motion and computed a
moving objects self-similarity (ircluding human mo-
tion experiments). A review by Aggarwal and Cai {1}
clagsified approaches to human motion analysis, the
tasks involved, and major areas related to human mo-
tion interpretation. A review by Pavlovic et al. [12]
addressed main components and directions in gesture
recognition research for HCL

It is known that color-based skin detection tech-
niques are susceptible to variability in lighting con-
ditions {12]. Some common solutions included [12]:
specially colored gloves or markers, restrictive back-
grounds or clothing, prior knowledge of initial hand
positions, or movement restrictions. Goals of our
project exclude such simplifications. Instead we use
the SCT/Center algorithm that can handle changing
illumination. It was originally developed for skin can-
cer detection using color features [18]. Later the algo-
rithm was successfully tested for position estimation
of micro-rovers [13].

Usefulness of 3-D data in gesture analysis applica-
tions is not questionable. Since most machine vision
system try to recover useful information about a scene
from its projections, having three-dimensional (3-D)
data eliminates ambiguities in solving the inversion
of a many-to-one mapping. The projection of human
movement often can be affected by the observation
viewpoint and the distance from the camera {20]. Most
gesture tracking and recognition applications could

certainly benefit from including range data and having
more information recovered from a scene. However,
until recently, using range data for tracking was not
feasible because of the speed and cost considerations.
Some authors used multiple cameras and models to
obtain 3-D locations of body parts. Azarbayejani and
Pentland [2] triangulated on blobs composing a model.
Gavrila and Davis [7] addressed whole-body tracking
with four cameras placed in the corners of the room.
Segen and Kumar [15] used depth cues from projec-
tions of the hand and its shadow for 3-D hand pose
estimation. Otherwise range data was used in motion
analysis primarily in an offline mode {16, 17].

Recent availability of less expensive, faster range
data makes it a feasible additional source of informa-
tion for tracking. This is the first real-time gesture
tracking system that utilizes on-demand range in both
spatial and temporal representations. It will be ap-
plied to natural navigation and visualization of large
data sets. The method is also applicable to virtual re-
ality systems. Oda et al. [11] reported application of a
real-time range to virtual reality which utilized com-
parison of the depth information in real and synthetic
data. In addition to the efficient range processing, pro-
posed method also deals with the major shortcoming
of color-based localization methodologies variability of
the skin color classification results under different il-
lumination conditions.

2 Description of the Method

Both color and range image are grabbed syn-
chronously, and color image is extracted and rectified
(corrected for lens distortions). However, range is not
processed at this point (Figure 1) as one would ex-
pect. Instead, a number of filters are applied to the
color data. These filters achieve a goal of localizing
regions of interest (ROIs), specifically hands for our
application (since their motion will provide input to
visualization programs).

First, color feature filters are applied. The spher-
ical coordinate transform (SCT) separates the color
and brightness information. Color normalization pro-
vides SCTs insensitivity to variations in illumination
(see Appendix 2). LAB space is computed, and pixels
are classified as skin are computed using derived sta-
tistical data. A skin classifier with minimum distance
classifier using Mahalanobis distance (see Appendix 2)
selects pixels that can be considered skin pixels.

Noise removal is achieved with a sequence of ero-
sions and dilations. The connected component analy-
gis is performed next by scanning from left to right and
from top to bottom, labeling, and evaluating equiva-
lencies. Resulting regions are sorted, and small regions
are removed from further consideration. Region area
is evaluated with respect to the image size. Other ge-
ometry and shape filters are designed to eliminate re-
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Figure 1: Algorithm of the range on-demand ap-
proach.

gions with unlikely shapes for human faces or hands,
including long regions, regions with very few pixels
(less than 30 %) classified as skin.

The human hands and faces are difficult to detect
when only color information is used. Experiments in
the next section use a simulation of a possible virtual
scene with objects of various shapes and sizes, and a
robotic hand which could be following human gestures
in a completed back-end virtual reality application.
One of the objects, a ball in the center of the scene,
is given color properties very similar to human skin to
confuse the program.

However, additional filters are set to prevent such
confusion. A static region detection filter (defined for
frames after the first) determines the absence of cur-
rent motion for a given region. The filter evaluates it
proportionally to the average noise level and the image

size (since motion considered neglectable for relatively
large images can be considered important for smaller
ones). The process results in dynamic regional range
images (DRRIs). Static regions are shown on DRRIs
as outlines only, since range is not computed for them.
DRRIs contain range information for regions of inter-
est (with pixels still classified as skin after color- and
geometry-based filters) moving in the current frame,
outlines for static regions and recent motion informa-
tion for both.

Only non-static regions are selected for range pro-
cessing which takes place at this point (again let us
note that color and range were grabbed synchronously,
only the range processing was postponed). Stereo is
estimated only for selected ROIs. Thus, the compu-
tation bottleneck is greatly reduced (see next section
for speedup percentages vs. region sizes).

Next, the depth analysis filter evaluates whether
ROIs exhibit face or hands geometry since the depth is
known at this step, absolute sizes are computed. Non-
human regions are excluded from the motion compu-
tation, but currently still tracked on the color images
and DRRIs for visual purposes. If skin colored mov-
ing objects pass previous filters, then they are unveiled
at this point (and not included into motion computa-
tion). The entire algorithm of the range on-demand
approach is shown in Figure 1.

3 Experimental Results

The following experiments involve application of
the algorithm to color and range image sequences of
gestures. Triclops color stereo vision system (manu-
factured by Point Grey Research, Vancouver, Canada)
is used to capture these sequences. The module con-
nects to a single-processor Pentium III PC. Range in-
formation is recovered in real time from a correlation-
based trinocular stereo algorithm (see Appendix 1 for
details about the algorithm).

Typical color and range images produced by the
stereo vision system are shown in Figure 2. Closer
objects appear lighter in the range data, except for
the darkest areas (for instance, some hair and far wall
regions) indicating that no correspondence was found
during the stereo matching process. As a result of
applying color information-based filters, skin regions
are selected (shown as white areas in the binary image
in Figure 3(a), and as a rectangular enclosing boxes
in Figure 3(b)).

Selected frames from sequences of intensity and
DRR images are shown in Figures 5 and 4. Frames
are chosen when both color and range information
was scheduled to be processed (every n — th frame
in the algorithm, where n=5). To tell the preparation
stage from the nucleus and retraction stages, inter-
actors will use a fist as if grabbing the object being
manipulated. That is why frames, taken during ges-




Figure 2: Typical color and range images produced by
the stereo vision system.

(a) (b)
Figure 3: Pixels classified as skin as a result of apply-
ing color information-based filters.

tures signifying object operations, show persons us-
ing closed fists. Since manipulation of virtual objects
is one of popular applications of hand gestures [12],
the background represents a scene with virtual objects
and a robotic arm-manipulator, one of them (a ball)
is skin-colored. Of course, the main application of the
system, as discussed in the Introduction, will be inter-
active exploration of visualized large data sets.

The first sequence shows tracking of a zoom gesture
(hand moving towards the camera). First frame shows
that all three candidate skin regions are detected: the
face, the hand, and the virtual ball (created as a dis-
tracter with color similar to skin). These regions pass
color feature filters, noise removal and region geometry
filters, and static region detection filters (since relative
motion is not defined for the first frame). However,
the ball is not tracked beyond the first frame since it
is obviously a static object. Note that the tracking
system developed is a front-end for the interactive vi-
sualization software, and, therefore, background sub-
traction is not the best option in the general case. No
apparently static regions are processed (the face and
the ball). Otherwise, they would have been excluded
from motion analysis on the basis of depth or size or
both by the last filters. Hand motion was detected in
frames 3, 7 and 10, and reflected in respective DRRIs.

Similarly, the second sequence has hand motion in
six frames (not considering the first one) and head mo-
tion in two frames (8 and 9). Obviously, keeping ones
head completely motionless is not a practical consid-
eration, and head motion is present in all frames. In
most frames, however, it does not pass the small mo-
tion filter (based on the average noise level and the
image size).

DRRIs can be included in motion analysis, trajec-

tory computation, gesture recognition, to determine
what types of gestures are natural and feasible for
robust tracking and interpretation for interactive ex-
ploration of large data sets and virtual environments.
They can be easily plotted in a 3-D space for move-
ment trajectory parameterization. Also they can pro-
duce (also in 3-D) templates for recognition of move-
ments somewhat similar to the temporal templates [6].

Tables 1 and 2 contain statistics for corresponding
motion sequences. Frame numbers correspond to re-
spective frames in figures. “Number of ROIs” column
indicates regions selected for range processing, next
column contains their total area. Percentage of total
image size is also included, as well as the total time
for this frame (for the entire algorithm to process it)
and the speedup over an average non-ROI processing
time per frame (488 ms).

Average frame rate for longer sequences is also mea-
sured and averaged. Processing 1 range image for ev-
ery 4 color images is done at a rate of 10.6 frames per
second for a 320x240 image size, and at a rate of 16.5
frames per second for 160x120 images. Therefore, the
method is applicable to the real-time processing. More
over, since the Triclops library is currently optimized
for thread parallel processing, a much greater speedup
can be achieved on a dual-processor NT machine (we
plan to move the system there in the near future).

Table 1: Statistics for the forward hand motion.

Frame Number Total % of Time for Speedup,
(Fig. 4) of ROIs area of area this frame, %
ROIs size ms

1 3 5105 6.65 281 42.5
2 0 0 0 240 50.8
3 1 2030 2.64 261 46.6
4 0 0 0 233 52.2
5 0 0 0 227 53.4
6 0 0 0 233 52.2
ki 2 3268 4.26 274 43.9
8 0 0 0 233 52.2
9 0 0 0 234 52.1
10 3 4992 6.50 280 42.6

Table 2: Statistics for the side-to-side hand motion.

Frame Number Total % of Time for Speedup,
(Fig. 5) of ROIs area of area this frame, %
ROIs size ms

1 3 8690 11.832 287 41.1
2 0 0 0 240 50.8
3 0 690 0.90 267 45.3
4 1 837 1.09 267 45.3
5 3 837 1.09 267 45.3
6 0 0 0 233 52.2
7 1 868 1.18 267 45.3
8 2 6719 8.75 281 42.5
9 2 6425 8.37 280 42.6
10 0 0 0 241 50.7

The speedup is significant (between 41% and 54%).
However, according to equation 3 (see Appendix 1),
the speedup per frame should be proportional to the
ratio between ROI and image areas. Experiments
show that, for example, 6-8% ratio yields a gain of
slightly more than 40% over non-ROI implementation.
One of the reasons is that rectification (distortion re-
moval) is still done on the entire image.



Figure 4: Tracking of skln color regions (left column) Figure 5: Tracking of skin color regions (left column)
and progress in DRRIs (right column) for zoom ges- and progress in DRRIs (right column) for translatlon
ture (hand moving towards the camera). gesture (hand moving side-to-side).



Another reason is that actual region sizes (for the
correspondence matching between cameras) also in-
clude the number of disparities d searched: for a K by
L region, a left-to-right pass is done for a K (L + d)
region, and a top-to-bottom pass is performed for a
(K + d)L region. Matching on the entire image does
not encounter this effect since there is obviously no
data outside the image boundaries. Yet, these rea-
sons do not account for the differences between the
theoretical and experimental speedup. An implemen-
tation maximizing potential advantages of using ROIs
can bridge this gap.

Motion trajectories bor both hand movements in a
3-D space are shown in Figures 6(a-b).

Figure 6: Motion trajectories bor both hand move-
ments in a 3-D space.

4 Additional Aspects of Real-Time
Range

Increased speed of processing can also facilitate a
combination of intensity- and range-based input fea-
tures. Range data enables localized search for spe-
cific features, which improves tracking reliability and
speed.

Registered range data provides an additional infor-
mation valuable for segmentation and tracking. Often,
an object of interest can be separated from other ob-
jects or background by depth alone. In other cases,
having fewer artifacts (that could complicate segmen-
tation) in range information compared to intensity
data is an important consideration for model match-
ing [16].

Real-time constraints such as temporal correlation
produce a possibility of searching within a smaller re-
gion, based on the match in the previous frame. For
the range image, this involves depth planes immedi-
ately surrounding the plane where a hand (or face)
was found in the previous frame. Subsequent search
in the subset of the intensity data corresponding to
these planes produces the position of the body part in
the current frame. Therefore, intensity data is thresh-
olded for the certain range and depth. Such combined
use of input features produces not only a speedup due
to a significant reduction in a search space, but also in-
creased reliability due to a decreased number of false
positives that could fall in such space. Rather than
processing all pixels, this allows us to select only those

pixels with the certain depth, based on the depth of
the previously detected region of interest.

Two intensity images from a sequence of the speak-
ing person are shown in Figures 7(a-b). More images
are not displayed due to space restrictions. A skin
detection algorithm is applied to the intensity data
from Figure 7(a). Results of skin thresholding follow-
ing color segmentation are shown in Figure 7(c). Pix-
els classified as skin are white. Note that, along with
the face and hand information, it picks up up parts of
other objects — a curtain on the right and a belt.

Instead of applying the color segmentation again,
it is possible to take range data into consideration by
selecting one or more depth levels where a region of
interest was found (Figure 7(e)). Since the motion
between two frames is small, the same level indicates
approximate location of the hand in the next frame
(red areas in Figure 7(f)). This level, along with the
two closest depth levels (before and after), constitute
the search space for the current frame (instead of the
entire image). Search in the range domain prevented
us from considering intensity-based segmentation ar-
tifacts (such as a curtain and a belt). Segmentations
along intensity and depth channels also can be per-
formed independently and then combined.

(e) ()

Figure 7: (a-b) Intensity images of the speaker. (c)
Results of skin segmentation and thresholding. (e-f)
Range images with selected depth levels.

5 Towards Emulating Redundancies
in Biological Vision, and Analogies
with Human Attention

One of the aspects of biological vision underutilized
in the past for building image understanding systems
is data redundancy. Computer vision systems could
not afford such extravagant solutions. Combination
of real-time intensity and range input data sets pro-
posed by the described method provides possibilities
for exploration of other advantages arising from re-
dundancies we can now afford. However, complexity
of certain tasks will probably make straight-forward
solutions unfeasible in the foreseeable future. Range



processing can be considered one of such tasks. Accu-
racy demands for many tasks rise faster than hardware
improvements. That is why recent precision scanners
spend more time on range acquisition and computa-
tion than older, less accurate models. For instance,
it takes on average more then 30 seconds to acquire
and compute range data using a K2T scanner on a
SUN SPARC 20, and more than 2 minutes using a
Cyberware scanner on Silicon Graphics 02 (consider-
ing higher precision achieved with the latter). This
makes an interesting case for applying other human
perception phenomenons to this problem.

The phenomenon of attention in human vision [4] is
a biological solution to the problems of complexity and
overabundance of data . It is a means to put the lim-
ited resources of the visual system into the right place
{and the right orientation) at the right time, and to set
the mind in the right context. An important point is
the limited amount of available computational power,
both in our brain and in the computer (for range pro-
cessing) that we actually have. On the biological side,
this might be the reason for the usefulness of atten-
tional mechanisms. The attentional mechanism: can
then be seen as the tool for granting “computational
resources” to the tasks, according to their dynamic
pricrities. Another view of attention is as a mecha-
nism for determining regions of interest in an image
{DRRIs in the proposed approach}.

Attention includes certain aspects [4] similar to the
properties of the described system such as filtering un-
necessary data and attending to selected sources only
(such as hand motion in the described system), search-
ing for a particular feature (skin color), and expecting
something to happen meanwhile attending to empty
space (static region outlines in DRRIs).

Another way to schedule the range processing com-
putations is to describe a system of states and opera-
tors in such a way that a heuristic evaluation function
can guide their application. A sketch of this part of
such a system is given in the following:

1) the space of states S includes states that corre-
spond to sets of ROIs;

2) the set of operators includes transformations T
between the states in the temporal and spatial senses;

3) there are means of computing the cost of an arc
(sl, 52);

4) a current state at any time is represented by a
DRRI;

5) a goal-state predicate is defined which returns
true when a state represents a completely tracked (and
recognized) gesture.

Thus, the process of gesture tracking with real-
time range on-demand may be thought of as finding
a path through a “regional attention” kind of graph.
The path nodes corresponding to states of ROIs. A
minimum-cost path from the start state to a goal state

is therefore analogous to a maximum likelihood clas-
sification of the gesture sequence.

6 Conclusions and Future Work

This paper presented a new approach to a ges-
ture tracking system using real-time range on-demand.
The system represents a gesture-controlled interface
for interactive visual exploration of large data sets.
The paper described a method performing range pro-
cessing only when necessary and where necessary.
This is achieved by a set of filters on the color, mo-
tion, and range data. The speedup achieved is be-
tween 41% and 54%. The algorithm also includes a
robust skin color segmentation insensitive to illumi-
nation changes. Selective range processing results in
dynamic regional range images (DRRIs). This devel-
opment is also placed in a broader context of a biolog-
ical visual system emulation, specifically redundancies
and attention mechanisms.

The gesture tracking system described in this paper
will be responsible for supplying data manipulation
parameters to interactive data exploration and col-
laborative visualization software. Processing 1 range
image for every 4 color images is done at a rate of
10.6 frames per second for a 320x240 image size, and
at a rate of 16.5 frames per second for 160x120 im-
ages. Therefore, the method is applicable to the real-
time processing. More over, since the Triclops library
is currently optimized for thread parallel processing,
a much greater speedup can be achieved on a dual-
processor NT machine (we plan to move the system
there in the near future).

Robustness of the approach is achieved with mul-
tiple input feature sets. Depth filters are necessary in
addition to color, motion and shape filters. Increased
speed of processing can also facilitate a combination of
intensity- and range-based input features. Range data
enables localized search for specific features, which im-
proves tracking reliability and speed.

DRRIs can be included in motion analysis, trajec-
tory computation, gesture recognition, to determine
what types of gestures are natural and feasible for
robust tracking and interpretation for interactive ex-
ploration of large data sets and virtual environments.
They can be easily plotted in a 3-D space for move-
ment trajectory parameterization.
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A Appendix
A.1 Range Computation

The Triclops stereo vision system {8] computes range
based on triangulation between cameras. It consists of

a three-camera module. Offset in nositions of the cam-
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eras produces differences in resulting images. These images
are compared using square masks to establish correspon-
dences [8]:

¥ ¥
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Where dinin and dmg. are the minimum and maximum
disparities, m is the mask size, Irign: and Iy are the
right and left images, respectively [8]. Since the camera
parameters (their relative positions, the focal length and
resolution) are fixed, re-calibration is not usually required.
According to the muiti-baseline stereo theory {9, 11] used
in the stereo computation by the system, distance z to the
scene point is related to the disparity d, baseline length B
and focal length F:

(2)
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The total amount of computation for stereo processing
per frame (required for the Sum of Absolute Differences
algorithm} is estimated as [11}:

N?M?d(C -1)P (3)
where N? is the image size, C is the number of cam-
eras (three for the system used), and P is the number of

operations per one square difference calculation.
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1 Color Space

The main reason SCT became an integral part in
numerous applications in the medical imaging [18] and
robotics [13] is because it separates the color and bright-
ness information. This allows for a much more reliable
segmentation based on the color data which is normally
greatly affected by the lighting conditions.

The spherical coordinate transform from the RGB space
into a LAB space is defined as [13]:

L=+/R*+G*+ B?

LA =cos™! [%] 4)
a4 ]
LB = cos lMJ

where L is the one-dimensional brightness space, and
angles A and B determine a two-dimensional color space.
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tions in illumination. L can be viewed as a norm of the
vector from the origin to the point in RGB space, A is
the angle between the vector and the blue axis, and B i
the angle between the red axis and the projection of the
vector onto the RG plane (Figure 8(a)). As a result of
the transform, a new color space is represented by a color
triangle which can be partitioned into the specified num-
ber of classes (Figure 8(b)). Greater number of classes
improves discrimination. The minimum and maximum A
and B values are calculated, defining such areas within the
triangle in equal angular increments. The RGB means are
defined for each class.

Pixels with certain color properties are found in the
image using the minimum distance classifier with Maha-
lanobis distance. It can be defined as a distance from the
feature vector X to the mean vector M.

r= (X - Ma)C: (X - M) (5)

where C: is the covariance matrix for X.
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Figure 8: RGB and LAB color spaces: (a) LAB values
for a point in RGB space, (b) partitioning of the color
triangle into classes.




